
J .  Fluid Mech. (1987), vol. 179, p p .  267-281 

Printed in &eat Britain 

267 

Waves produced by a vertically oscillating plate 

By L. M. HOCKING 
Department of Mathematics, University College London, Gower Street, 

London WCIE 6BT. UK 
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The vertical oscillation of a plate partially immersed in a non-wetting fluid produces 
a radiated wavetrain when the contact line between the plate and the free surface 
of the fluid cannot move freely along the plate. Realistic conditions to apply at the 
contact line when capillarity is not negligible include the dynamic variation of the 
contact angle and contact-angle hysteresis. Both of these effects are included in this 
paper and the amplitude of the radiated waves and the energy dissipation at the 
contact line are calculated. 

1. Introduction 
The interaction between surface waves and partially immersed bodies, which may 

be fixed or floating or may be executing forced motions, has been the subject of many 
investigations. The review article by Wehausen (1971) contains an account of some 
of this work and the general problem of wave-body interaction is central to many 
devices for the extraction of energy from waves (see Evans 1981). In many 
applications the effect of surface tension can safely be ignored and most, if not all, 
of the theory has treated gravity waves only. When very short waves are important 
or when gravity is effectively reduced, at the interface between two fluids of nearly 
equal density, for example, the restoring forces of gravity and capillarity must both 
be included. There has been some recent work on capillary-gravity waves (Hogan 
1979; Vanden-Broeck 1983) in horizontally unbounded regions, but little consider- 
ation has been given to the interaction of such waves with vertical boundaries. 

A special feature of the inclusion of surface tension is the need to add edge 
conditions at the intersection of the free surface of the fluid with the boundary. These 
conditions are required because of the increase in order of the dynamic boundary 
condition at  the interface when surface tension is present. The first discussion of the 
need to impose edge conditions is by Benjamin & Scott (1979), who argued that the 
appropriate edge condition is, in many cases, that the contact line remain fixed 
throughout the motion. Their main interest is in a rim-full channel, for which the 
fixed contact line is certainly appropriate, but they also argue that the same condition 
would apply on a solid surface when the contact angle between the fluid and the solid 
exhibits hysteresis, that is, when there is a range of possible static contact angles. 
The same condition was applied by Graham-Eagle (1984) in his determination of the 
frequencies of capillary-gravity waves in a full circular cylinder. Another possible 
choice of edge condition was proposed by Hocking (1987) in his study of the damping 
of waves in a region bounded by two vertical walls. The observed contact angles 
between a fluid and a solid are velocity dependent, and a model of the edge condition 
that incorporates this behaviour, but ignores hysteresis, is to require that the contact 
angle be proportional to the relative velocity of the contact line on the surface. 
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Contact-angle hysteresis is a nearly universal feature of real materials; for surfaces 
that are very smooth and chemically homogeneous its influence may be relatively 
small even if it cannot be completely eliminated. The model condition includes as 
limiting cases both the fixed contact line used by Benjamin & Scott (1979) and 
Graham-Eagle (1984) and the fixed contact angle, which is the condition obeyed by 
gravity waves in the presence of vertical walls when there is no surface tension. In 
the general case, this condition implies the dissipation of energy at the contact line 
and Hocking (1987) calculated decay rates for standing waves between two vertical 
walls. This decay is produced partly by processes in the vicinity of the contact line, 
as modelled by this edge condition, and partly by viscosity; in some cases, the first 
dissipative process may dominate the second. 

Following this treatment of standing capillary-gravity waves, i t  is natural to 
consider the wavetrains produced by an oscillating body in a horizontally unbounded 
region. Without surface tension such waves are produced by the displacement of the 
fluid by the body. With surface tension present, the restriction on the motion of the 
contact line on the surface of the body imposed by the edge condition is an additional 
source of propagating waves on the fluid surface. Since this is a novel feature not 
present when only pure gravity waves are possible, i t  is instructive to consider a 
special case when there is no displacement effect. If a thin vertical plate intersects 
the free surface of the fluid and is forced to oscillate in its vertical plane no waves 
will be produced (in an inviscid fluid) if the contact line can move freely up and down 
the plate. If, however, the contact line is fixed on the plate, or if the contact angle 
varies with speed, the fluid near the plate will be brought into motion and a wavetrain 
propagating away from the plate will be produced. The waves produced in this way 
by an oscillating plate and the corresponding energy balance are calculated in this 
paper with and without contact-angle hysteresis. 

As well as providing information concerning the effect of the combination of surface 
tension and the edge condition on the interaction between surface waves and moving 
bodies, the particular model-problem solved has application to the Wilhelmy plate 
apparatus. This is a means for determining contact angles in dynamic conditions and 
consists of a thin plate which is slowly lowered into or removed from fluid at rest. 
From careful measurements of the vertical force on the plate during its motion, 
variations in the contact angle can be inferred. Young & Davis (1987) have applied 
a realistic edge condition (including hysteresis) to the oscillatory motion of such a 
plate. They show that, for parameters applicable to the operation of the apparatus, 
it is possible to determine the motion of the contact line along the plate, and the 
predicted force-balance, without having to calculate the waves produced by the 
motion of the plate. The present results extend the work of Young & Davis to a 
parameter range when the waves and the contact-angle motion have to be calculated 
simultaneously. 

The major restrictions on the physical situation are that the amplitude of the 
motion is small enough for the waves to be linearized and that viscosity has a 
negligible effect. A more severe restriction, and one that is less easy to justify, is that 
the static contact angle is centred on 90'. This greatly simplifies the analysis, and 
a similar condition has been used by Graham-Eagle (1984), Hocking (1987) and 
Young & Davis (1987). A second limitation is that the motion is two-dimensional, 
so waves propagate only in the direction normal to the plate. The problem to be solved 
is formulated in $2 and the relevant non-dimensional parameters are identified there. 
The energy balance is discussed in $3 and an expression from which the rate of 
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FIGURE 1. The oscillating plate. 

dissipation can be calculated is given. The solution without contact-angle hysteresis 
is in $4. With contact-angle hysteresis present, the analysis is more difficult and a 
closed-form solution cannot be found; in $5 the problem is formulated as an integral 
equation which is solved numerically. Some discussion of the results and their 
comparison with those found by Young & Davis (1987) closes the paper. 

2. Formulation and parameters 
Consider a thih plate which is oscillating sinusoidally and vertically in its own 

vertical plane (figure 1).  The plate intersects the free surface of fluid of depth D'. The 
width of the plate is the same as that of the channel containing the fluid but any 
effect of the lateral boundaries is ignored; the motion is entirely two-dimensional. 
The bottom edge of the plate has a mean depth d', less than D', and the velocity of 
the plate has an amplitude V' and an angular frequency u'. The lengthscale chosen 
as a basis for non-dimensionalization is proportional to the wavelength 27r/k' of 
surface waves having the same frequency as the oscillation of the plate. The 
coordinates of a point in the fluid are denoted by (x,y)/k', with origin at the 
intersection of the plate and the undisturbed free surface. The x-axis is horizontal 
and normal to the plate and the y-axis is vertical and upward. 

The corresponding velocity components are V'(u,w), and time is measured by 
(gk')-it, pressure by pV'(g/k')ip and the free-surface elevation by V'(gk')- iy ,  where p 
is the uniform density of the fluid and g is the gravitational acceleration. The bottom 
edge of the plate in its mean position is at y = - d  and the bottom of the fluid is a t  
y = -D, where d = k'd' and D = k'D'. The scaling quantity k' can be determined 
from the equation for capillary-gravity waves of the given frequency, namely 

= (gk' +-;-> y k f 3  tanh k ' D ,  

where y is the surface tension at  the fluid/air interface. 
The linearized equations for inviscid fluid motion are, with these scaled variables, 

au ap av ap au av 
at ax? at ay'  ax ay -+- = 0. _ -  _ _ _  - = _- 
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The associated boundary conditions are 

(2.3) u = O  o n x = O ,  v = O  o n y = - D ,  

the first condition applying both on the plate and below it, since the motion is 
symmetrical about the plane x = 0. On the free surface, the kinematic and dynamic 
conditions are that 

(2.4) _ -  ar] q-K-=p a2r] o n y = O ,  
at - ', ax2 

where 

The parameter K measures the relative importance of surface tension and gravity 
and is therefore a Bond number. The velocity of the plate is given by V'V,  where 

(2.6) V = coscrt, 

(2.7) 

The waves produced by the oscillation of the plate propagate away from the plate 
so that a radiation condition must be satisfied. The equations permit solutions with 
asymptotic behaviour as x tends to infinity of the form 

(2.8) 

where uk is the angular frequency of capillary-gravity waves of length 2nlk and is 
given by 

(2.9) 

U12 and g2=-- - (1+K) tanhD. 
gk' 

r] - R, exp{i(u,,t+kx)}+R- exp{i(ukt-kx)}. 

c r i  = k( 1 + Kk2) tanh kD. 

The radiation condition is that 
R, = 0. (2.10) 

The final condition needed to close the problem is the condition at the contact line. 
A suitable model for this condition that includes both contact-angle hysteresis and 
the dynamic behaviour of the contact angle is sketched in figure 2 and has the form 

This condition applies at x = 0 on the positive side of the plate; a similar condition 
with the sign of the right-hand terms reversed holds on the negative side, but the 
symmetry of the problem implies that we need only consider x positive. When the 
slope of the free surface lies between a: and a; the contact line does not move relative 
to the plate; when the slope exceeds a; the contact line advances up the plate and 
it retreats when the slope falls below a:. The chosen form of the edge condition is 
consistent with the known behaviour of contact angles (Dussan V. 1979) and has the 
same form as that used by Young & Davis (1987); the linear relationship between 
slope and speed is valid for low speeds. For motions of sufficiently small amplitude, 
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FIGURE 2. The contact-angle model. 

the slope will remain within the static range of contact angles and the contact line 
will remain fixed, as in the problems studied by Benjamin & Scott (1979) and 
Graham-Eagle (1984). Contact-angle hysteresis will only influence the motion if the 
amplitude of the oscillation of the plate is large enough for the slope to exceed a; 
or fall below a:. The scaled version of (2.11) has the form 

where 

--cosut= 0 I all 
at 

all 
ax 

if a, < - < a,, (2.12) 

(2.13) 

with similar expressions for A, and a,. In  what follows, the general case will be 
simplified by assuming that 

A, = A,, a, = -aa; (2.14) 

the asymmetrical case can be treated by the method explained in $5, but the method 
of $4 for the non-hysteresis problem requires the symmetry. 

This completes the description of the problem to be solved. The parameters are 
K, D, A and a. The depth a! of the bottom edge of the plate does not enter the problem 
in the absence of viscosity since the only boundary condition on the plate, namely 
u = 0, applies also to the fluid below the plate. The primary effect of viscosity is the 
presence of a Stokes layer on the plate, as in the standing-wave problem of Hocking 
(1987). The relevant parameter is defined by 

(2.15) 

where v is the kinematic viscosity of the fluid and the viscous dissipation is of order 
f 1. The neglect of viscosity is therefore valid provided f 4 1. The scalings used by 
Young & Davis (1987) in their study of the Wilhelmy plate differ from those employed 
here. They work with two parameters, Band C, which are respectively a Bond number 
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and a capillary number, and for small values of K these parameters can be written 
in terms off and K, with 

(2.16) 

Young & Davis assume that G is small and that B is arbitrary, which implies that 
f and K are both small. In the present work, f is small but K can have an arbitrary- 
size. 

3. Energy balance 
The energy E of the fluid occupying the region 0 < x < X, - D < y < 0 consists 

of kinetic energy, gravitational potential energy and the energy of the free surface. 
Integration of the equations of motion and the application of the boundary conditions 
show that the rate of change of E is given by 

In periodic motion E does not change over a period. The energy E,  radiated away 
from the plate by the waves is given by 

and (3.1) shows that this energy is equal to that supplied to the fluid by the plate, 
that is, 

The external force applied to the plate must account for the mass-acceleration of the 
plate and its net weight allowing for buoyancy; the remaining part of the force 
balances the surface forces. Hence the energy Es supplied to the fluid and the surface 
is given by 

(3.4) 

The equation for the energy balance is then 

where ED is the energy dissipated at the edge and is given by 

ED = jO2"" K ($ - cos d) 2 I dt . 
0 

This energy dissipation is inherent in any model that allows for dynamic contact-angle 
behaviour (see Dussan V. & Davis 1986) and arises from the structure of the motion 
in the vicinity of the contact line. The energies defined here are all for one period 
of the motion and for unit width in the spanwise direction. There is no dissipation 
of energy if the contact angle is fixed, which can happen in the limit as A+ co, nor 
if the contact line is fixed, which corresponds to A = 0 or to large hysteresis. 

The radiated energy E ,  can be calculated in terms of the amplitude of the radiated 
waves. If, for large x, 

7 - c exp {i(at -z)}, (3.7) 
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the corresponding value for the pressure can be written as 

exp {i( nt - x)}, 
cosh (y + D) 

P N C ( l + K )  coshD 

and from (3.2) we can evaluate this energy in the form 

E -  .IcQ ICl2, - 2 tanhD (3.9) 

where & =  (1+3K)tanhD+(1+K)Dsech2D. (3.10) 

4. No contact-angle hysteresis 
Although real materials exhibit contact-angle hysteresis to some extent, it is 

helpful to consider first the motion when there is no hysteresis. This covers the case 
when the stick phase of the motion occupies a negligible fraction of the oscillatory 
motion. It also includes (by setting h = 0) the opposite extreme, when the hysteresis 
is so large that the edge does not move relative to the plate, and, with A = co, the 
free-end case appropriate for pure gravity waves, which is useful for comparison. In 
this special case of no contact-angle hysteresis, the edge condition (2.12) has the 
simpler form 

-- aq %I cosat = A -  
at ax* 

The motion is now sinusoidal and can be found by an extension of the method used 
by Hocking (1987) in the standing-wave problem. In order to accommodate phase 
changes we can replace the term cosat in the edge condition (4.1) by exp ( id) ,  and 
then this time factor can be removed from all the dependent variables. The pressure 
and the velocity components can be written as Fourier integrals in the form 

dk, 
cosh k(y + D) 

cosh kD 

cosh k(y + D) 
cosh kD 

sinh k(y + D )  

p = Jorn P(k)  cos kx 

dk, iau = k P  sin kx 

dk, 

5," 
iuv = - kP cos kx 

JOW cosh kD 

(4.3) 

(4.4) 

which satisfy the equations of motion and the conditions at x = 0 and at y = - D. 
The surface elevation can be found from the dynamic condition at the free surface 
and has the form 

7 = J r n  cos kx dk + !j.~cK-aA exp ( - z K 4 )  ,, 1+Kk2 

= J r n  P+A cos kz  dk, 
1+Kk2 (4.5) 

where A is an arbitrary constant. The kinematic condition at  the free surface gives 
another expression for 7, namely 

iuy = -; Jorn k P  tanh kD cos kxdk, (4.6) 
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and, on equating these two values for 7, we obtain 

+ ( 1 + K) cS(k- l ) ,  
A 

k( 1 + Kk2) tanh kD - u2 
P =  (4.7) 

where c is an arbitrary constant and S is the Dirac delta function. 
The asymptotic value of 7 as x+ 00 follows from (4.6) and (4.7). The pole at k = 1 

gives the dominant contribution to the principal value of the integral and we have 

n tanh D 
A sinx. 

Q 
7 - c cosx- 

With the time factor re-introduced, the radiation condition gives 

7 - c exp{i(at-x)}, (4.9) 

provided that iQ 
x tanh Dc. 

A =  (4.10) 

The edge condition (4.1) and this relation between the values of A and c then show 
that 

where 

-1 
C, - iCi ’ 

c=- 

dk, 
Q “  k tanh kD 

nu j0 k( 1 + Kk2) tanh kD - u2 
c, = - 

l + K  AQ c. = - ’ u +2K* 

(4.11) 

(4.12) 

(4.13) 

The radiated and supplied energies can be calculated from (3.3) and (3.4) and after 
some simplification we obtain their values in the form 

(4.14) 

(4.15) 

The integral in the equation for C, can be evaluated by contour integration. 
Standard methods give the value of the integral in the form 

dk 
k tanh kD 

fom k ( l  + Kk2) tanh kD-a2 

(4.16) pn tanpnD 
“ 

= x  c, 
(3Kpi- 1 )  tanpnD+pn(Kpi- l)D secZpnD’ 

where p,, is the real root of the equation 

p(Kp2- 1)  tan@ = (1 +K) tanh D. (4.17) 

Numerically determined values for E,, ER, ED = Es - E R  and the amplitude of the 
radiated wave IcI for various values of K, D and h are shown in figures 3 and 4. The 
curves for D = 1 are only a little different from those for D = 10, indicating that the 
surface motion only depends significantly on the depth of the fluid when D < 1. 
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A 

Values of the supplied energy Es (full line) and radiated energy E ,  
K = 0 . 1 , 1 . 0 , 1 0 . 0 . ( ~ ) D = 0 . 1 , ( b ) D = 1 . 0 , ( ~ ) D = 1 0 . 0 .  

(broken line) for 
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FIGURE 4. Values of the amplitude of the radiated wave for K = 0.1, 1.0, 10.0. (a) D = 0.1, 
( b )  D = 1.0, ( c )  D = 10.0. 
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For infinite depth the integral in (4.12) can be evaluated exactly, and the 
corresponding results are that 

cr = -{In 2n: (7) + K:( 3K+ 4)t tan-' (?)'I, (4.18) 
(l+K): K+1 2(3K+2) 

h(l+3K) 
2K ' 

ci = ( l + K ) i +  

Ci Es = ~ 

n:(1+3K) 
(1 + K): ER' 

E -  
- 2 ( q + q ) '  

(4.19) 

(4.20) 

As h + 00, both Es and E ,  tend to zero because the contact line can slip freely along 
the surface of the plate, and the fluid remains at  rest. For A = 0, Es = ER and 
ED = 0, since the contact line is fixed on the plate and there is therefore no dissipation 
of energy at  the contact line. The contact line also remains fixed when the 
contact-angle hysteresis is sufficiently large for the slope of the free surface to remain 
within the static range. Hence the results obtained here for a = 0 and A = 0 also 
apply when a is large. The solution for arbitrary values of the hysteresis angle a is 
the next topic to be discussed. 

5. Stick-slip motion 
Contact-angle hysteresis produces a stick-slip motion of the contact line along the 

plate. Intervals during which the contact line moves with the plate are interspersed 
with periods of relative motion in either direction. When the amplitude of the motion 
of the plate is kept fixed and when h is not zero, an increase in a produces a decrease 
in the proportion of the time during which slip occurs, until, for sufficiently large a, 
there is no slip and the contact line remains fixed to the plate. The two phases of 
motion prevent the application of the previous method, because the motion, though 
periodic, is not sinusoidal. The approach used here is to find the evolution of the 
motion from an initially static state and to continue until the transients have 
disappeared and a periodic solution has developed. 

The equations to be solved are the same as in $2, with the edge condition now of 
the form 

if - < a, I3 

The change in the phase of the forcing velocity is purely for convenience and it allows 
the initial state of the fluid and free surface to be given by 

?j = 0. (5.2) p = u = v =  

A solution of the same form as that used in $3 is possible, and we can write 

p = Jam P(k,  t )  cos kx 'Osh k (Y+ Dl dk. 
cosh kD (5.3) 
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If we take a Laplace transform in t ,  and denote the transform of any quantity f by 
7, the kinematic condition a t  the free surface gives the value of the transformed 
surface elevation in the form 

m 
- 

7 = -jo tanh kD cos kxdk. 

The dynamic free-surface condition shows that 

(5.4) 

where B(t) is the slope of the free surface a t  the plate. Equating the two expressions 
for r/ and inverting the transform, we can obtain a convolution integral for al;r/at in 
the form 

where 4(7, x) = - 2; lom tanh sin wt cos kx dk, 
w (5.7) 

and w2 = k( 1 + Kk2) tanh kD. (5.8) 

The edge condition (5.1) then gives an evolutionary integral equation for B in the 
form 

(h(I3-a) if B > a, 

F(7)B'(t-r)dr-sinat = 0 if 1BI < a, 
- s," I (5.9) 

\A(B+a) if B < -a, 

where F(7)  = 4 ( 7 , 0 ) ,  (5.10) 

and B(0) = 0. (5.11) 

The asymptotic values of F are given by 

(5.12) 
2 

P(T)  N -r($) ~ 4 7 - 4  for 7 6 1, 
K 

F(7) N -- Kr-3 for 7 9 1, 
n 

(5.13) 

and the solution of (5.6) for small values of t  has the form 

B(t) N - 1.091 . . . K-4( 1 + K)#. (5.14) 

The general solution can be found by expressing the integral over a small time interval 
6t in terms of the values of B and F a t  the ends of the interval. Hence at time N6t 
a linear equation can be obtained from which the value of B(NGt) can be expressed 
in terms of the values of B(m3t) for n = 1,2, .  . . , N -  1. The appropriate right-hand 
side at  this time is determined by solving for all three forms and choosing the one 
that gives a consistent value of B(N6t) .  Since the values of both F and B for small 
t are singular, a modified finite-difference approximation was used for the first and 
last interval in order to take account of the singularities. 

The values of B for successively increasing values of t were found by this 
procedure. The size of 6t was varied to check that sufficient accuracy was being 
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FIGURE 5. Values of the dissipation energy ED with contact-angle hysteresis and fluid of infinite 
depth. (a) K = 0.1, ( b )  K = 1.0, (c) K = 10.0. 
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obtained (at least three significant figures). The solution proceeded until B(t) was 
found to be periodic within a small tolerance; in some cases more than 1000 timesteps 
were needed, but usually 100-200 were sufficient. 

Some results for infinite depth are shown in figure 5 .  The energy dissipation in one 
period for various values of K and h is shown for increasing values of a. Beyond a 
critical value there is no dissipation because the contact line has become fixed. The 
critical values of a are approximately proportional to K-4, the ratio varying from 
about 1 for small K to about 1.5 for large K .  It is clear from the figure that the critical 
values of a are independent of A. 

Because the relevant parameters occur multiplicatively in the edge condition, it 
is difficult to separate the effect of the dynamic variation from that of the hysteresis. 
Some indication of their relative importance can be deduced from figure 5. For fixed 
A,  the change in the energy dissipation can be seen as the hysteresis increases from 
zero until i t  is so large that the contact line remains fixed. For fixed a, we can trace 
the effect of reducing the dynamic variation from its greatest value at h = 0 to zero 
ash-+co. 

The energy dissipation is a decreasing function of a when h is small. For larger 
values of h the dissipation first increases with a before decreasing to zero a t  the critical 
value of a. This is a surprising result, since the increase in the amount of hysteresis 
lengthens the proportion of the time during which the contact line is fixed and no 
energy is dissipated. The initial increase in dissipation may be due to a phase shift 
between the velocities of the contact line and of the plate. This increase in dissipation 
was also noted by Young & Davis (1987). 

6. Conclusions 
The methods used in this paper could easily be generalized to include arbitrary 

plate motions. It is not clear that the removal of the restriction to contact angles 
that are close to 90" can lead to a tractable problem. The solutions obtained here may 
give at least a qualitative understanding for general angles, but are likely to be of 
little use for contact angles that are close to 0" or 180'. 

There is a two-fold purpose to the investigations reported in this paper. The first 
is to show that the generation of waves by an oscillating body depends to a significant 
extent on the condition applied at the intersection of the free surface and the body 
when surface tension is not negligible. This is made evident by the choice of a vertical 
plate, since without surface tension and with the usual freely-moving contact line no 
waves are generated. The amplitude of the radiated waves has been determined for 
both fixed and moving contact lines. 

The second purpose is to present a solution of a fluid dynamics problem that 
includes the effect of contact-angle hysteresis. This phenomenon has been known for 
some time but quantitative results incorporating it are rare. Dussan V. & Chow 
(1983) and Dussan V. (1985) have discussed the effect of a maximum static contact 
angle on the shape of a drop on an inclined plane before it begins to slide. The first 
paper known to me that includes quantitative results for contact lines that reverse 
their direction of motion is the study of the Wilhelmy plate by Young & Davis (1987). 
However, in their case the motion of the contact line could be found without reference 
to the fluid motion. The solution given here requires the contact-line motion and the 
fluid flow to be calculated simultaneously. 

The problem treated by Young & Davis, as already noted, requires the parameter 
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K used in this paper to be small. If the value of x is rescaled by a factor K-4, the 
pressure p is O(K4) so that the dynamic free-surface condition (2 .4b)  can be solved 
for 9 to leading order with p = 0. The solution to this order can then be found from 
the edge condition only, the equation corresponding to (5.9) being 

i i ( B - 6 )  if B > &, 

if IBI < Oi, 
dB 
dt 

\A(B+&) if B < -0 i .  

The change in the scaling of x also changes the values of the parameters A and u. 
There are a number of other problems involving the interaction of waves and solid 

boundaries which are affected by velocity-dependent contact angles and contact- 
angle hysteresis. These include the reflection and transmission of an incident wave 
by a partially submerged body and the waves generated by an oscillating cylinder. 
A variant of the Wilhelmy plate apparatus uses a small circular cylinder which is 
lowered into and raised from a pool of fluid. In this case the radiated waves are 
axisymmetric and not plane, which is a major difference from the waves produced 
by a vertical plate. Also, there are now two causes for their generation, the 
contact-line behaviour that has been studied here and the displacement effect that 
also occurs when the contact line can move freely on the surface of the cylinder. 

Another problem of interest is the effect of hysteresis a t  the sidewalls of a channel 
along which B wave is propagating. The change in the frequency when the edge is 
fixed was found theoretically and experimentally by Benjamin & Scott (1979). 
Stick-slip motion of the edge may produce cross-waves as well as dissipating energy. 
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